53 research outputs found

    Design, development, and validation of a remotely reconfigurable vehicle telemetry system for consumer and government applications

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 67-68).This thesis explores the design and development of a cost-effective, easy-to-use system for remotely monitoring vehicle performance and drivers' habits, with the aim of collecting data for vehicle characterization and traffic shaping. Vehicular congestion and concerns over fuel reserves, pollution, and carbon emissions have recently emerged as prominent sociopolitical concerns. These problems are formidable, but could be addressed more fruitfully with better information about vehicles and drivers habits, leading to policies such as vehicle-specific congestion charging or an odometer-based road tax. Despite the proliferation of sensors in cars, data is often hidden due to the antiquated nature of the federally-required On-Board Diagnostics (OBD). Systems to log and process such data exist, but no well known reconfigurable systems augment OBD with additional sensor data and transmit it over a cellular network. This thesis proposes a system wherein vehicles become distributed sensors, each transmitting a rich supply of information. The standardization of OBD and decreasing cost of bandwidth make now an opportune time to develop a real-time logging system. Inexpensive processors make it possible to provide privacy through onboard calculation, obfuscating much personally-identifiable data. This document discusses the planning process, experimental configurations of hardware and software, results, and conclusions associated with the development of a cellular diagnostic system capable of supporting an "app" model for information feedback. I present a Bluetooth-OBD logger, a cellular logger, and a web interface capable of representing live and historical data from vehicles, including example applications for calculating congestion pricing. This project proves the feasibility of capturing data using a remotely reconfigurable controller area network (CAN) to general packet radio service (GPRS) interpreter, visualizing the information in real-time, and writing applications to make use of the incoming data. The hardware and software were proven successful in meeting the goals set for the project. The hardware proved robust, gathering data without issue for hundreds of miles. The sample data demonstrated low bandwidth use, identified network weaknesses, and pointed out issues with the currently-legislated OBD standard. This thesis closes by exploring future possibilities suggested by the development of this system, including wireless odometry and next-generation OBD.by Joshua Eric Siegel.S.B

    A peculiar HI cloud near the distant globular cluster Pal 4

    Full text link
    We present 21-cm observations of four Galactic globular clusters, as part of the on-going GALFA-HI Survey at Arecibo. We discovered a peculiar HI cloud in the vicinity of the distant (109 kpc) cluster Pal 4, and discuss its properties and likelihood of association with the cluster. We conclude that an association of the HI cloud and Pal 4 is possible, but that a chance coincidence between Pal 4 and a nearby compact high-velocity cloud cannot be ruled out altogether. New, more stringent upper limits were derived for the other three clusters: M 3, NGC 5466, and Pal 13. We briefly discuss the fate of globular cluster gas and the interaction of compact clouds with the Galactic Halo gas.Comment: Accepted for publication in MNRA

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network

    Embedded design to create virtual vehicles for cloud-based informatics, telematics, and infotainment

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 109-111).This paper describes the development and testing results for a system of Cloudbased mirrors for physical vehicles called "Avacars." Avacars duplicate parameters from On-Board Diagnostics, accelerometers, and GPS sensors installed in a vehicle as part of the MIT CloudThink set of standards. These Avacars may then be used as input and output for a diverse set of applications. Avacars are created by a custom-designed portable cellphone used to instrument a vehicle without user intervention and stored to a secure and private server. The first section of the document details the background for the Avacar project. It describes available technology and current unmet needs, and presents the solution of an open-standard based application platform for improving access to vehicle diagnostic data and creating new opportunities to build applications. The second section explains the need for an open platform in the context of end-user and developer feedback along with canonical application examples including vehicle-miles-traveled (VMT) monitoring and generation of fuel metrics to validate programs similar to the United States Corporate Average Fuel Economy (CAFE) standards. This section also explores the value of open and interoperable data as well as transparency in hardware design. Section three describes the implemented hardware and novel features facilitated by the hardware, including power saving and location-aware application development. This section includes an analysis of the problems faced in the design and deployment process, as well as steps the author might have taken to address these issues prior to their manifestation. Section four discusses the results of the hardware and platform in testing, and includes visualizations of data collected with the CloudThink platform. The author found that the hardware and platform were capable of addressing the needs of both VMT and fuel economy monitoring applications, though further testing is necessary to validate the results. The author also successfully utilized the platform to extend applications to incorporate non-OBD vehicle sensors and actuators. This allows for the creation of large datasets while providing value to users who chose to test the system, in the form of car applications that repackage information into digestible formats or adding features otherwise not typically available, e.g. unlocking from a cell phone. The paper closes by exploring future use opportunities for the CloudThink platform in monitoring non-automotive sensor enabled devices.by Joshua E. Siegel.S.M

    Enablers of cloud-connected vehicles and next-generation internet of things

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 247-270).Intelligent and Connected Vehicles reduce cost, improve safety, and enhance comfort relative to isolated vehicles. This ability for cars to sense, infer, and act facilitates data-driven improvements in occupant experience and vehicle design. This thesis explores informed individual vehicle improvements and proposes a secure and efficient architecture supporting connected vehicle applications. Applying On-Board Diagnostic and smartphone data, I built a suite of prognostic applications. Engine coolant temperature data supports inference of oil viscosity and remaining life. A linear SVM using Fourier, Wavelet, and Mel Cepstrum audio features provides 99% accurate engine misfire detection. PCA-transformed Fourier acceleration features and GPS data inform decision trees attaining 91% wheel imbalance and 80% tire pressure and tread depth classification accuracy. These applications demonstrate the ability for local vehicle and peripheral device data to proactively improve individual vehicle reliability and performance. Connectivity facilitates crowdsourced data to further improve current vehicles and future designs. Exploring vehicular connectivity, I consider data timeliness, availability and bandwidth cost in the context of an efficiency-improving idle time predictor. This predictor uses contextual information to eliminate short idle shutoffs in Automatic Engine Start/Stop systems, minimizing driver annoyance and improving compliance. These applications reveal an opportunity to address excess resource consumption and system insecurity in Connected Vehicles and other constrained devices. I introduce a secure and efficient model-based Internet of Things (IoT) architecture consisting of a "Data Proxy" utilizing a Cloud-run estimator to mirror an object with limited sensor input. The use of digital duplicates abstracts physical from digital objects, allowing the use of a mediating "Cognitive Layer" consisting of firewall and supervisory elements. These "Cognitive" elements apply the system model to monitor system evolution and simulate the impact of commands against known and learned limits. Finally, I propose incorporating this architecture into the CloudThink digital object duplication platform. Proxies maximize data collected per unit cost, while the firewall and supervisory elements will allow increased actuator access and to support generalized Cloud-based prognostics. I discuss how CloudThink's data ownership policies and privacy visualization tools combine with this architecture to address consumer privacy and security concerns, improving consumer acceptance of Connected Vehicles.by Joshua Eric Siegel.Ph. D

    Using Open Channels to Trigger the Invited, Unintended Consequences of the Internet of Things

    No full text
    We present techniques for bridging the Internet of Things air gap using device speakers to communicate with voice assistants and propose methods to protect critical applications from such attacks. Approaches include two-factor authentication, contextual monitoring, and source metadata embedding
    • 

    corecore